Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Dapagliflozin relieves renal injury in a diabetic nephropathy model by inducing autophagy through regulation of miR-30e-5p/AKT/mTOR pathway

Jun Zhang1 , Ting Ding1, Ximei Zhang1, Dongxing Tang1, Jianping Wang2

1Department of Nephropathy and Rheumatism and Hunan Province End Stage Renal Disease, Clinical Medical Research Center, Second Affiliated Hospital, Hengyang Medical School of University of South China, Hengyang, Hunan Province 421001, China; 2Department of Endocrine, Second Affiliated Hospital, Hengyang Medical School of University of South China, Hengyang, Hunan Province 421001, China.

For correspondence:-  Jun Zhang   Email: zhangjun_911@163.com   Tel:+867348899699

Accepted: 26 September 2022        Published: 28 October 2022

Citation: Zhang J, Ding T, Zhang X, Tang D, Wang J. Dapagliflozin relieves renal injury in a diabetic nephropathy model by inducing autophagy through regulation of miR-30e-5p/AKT/mTOR pathway. Trop J Pharm Res 2022; 21(10):2115-2123 doi: 10.4314/tjpr.v21i10.11

© 2022 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the mechanism of action of dapagliflozin on diabetic nephropathy.
Methods: A rat model of diabetic nephropathy was established by injection of fructose-streptozotocin. Blood glucose and urinary protein levels were measured, while histopathological changes in kidney tissues were determined by hematoxylin & eosin staining (H & E). Serum levels of creatinine (Cr), blood urea nitrogen (BUN), malondialdehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH), and lactate dehydrogenase (LDH) were evaluated by enzyme-linked immunosorbent assay (ELISA). Cell apoptosis and autophagy were investigated by evaluating apoptotic and autophagic protein expression by western blot.
Results: Administration of fructose-streptozotocin increased the blood glucose level of the rats (p < 0.001) and induced pathological changes in the kidney tissues, including glomerulosclerosis, renal tubule dilation, and inflammatory cell infiltration of rats. However, long-term treatment with dapagliflozin attenuated the fructose-streptozotocin-induced increases in Cr, BUN, and urinary protein and reversed the fructose-streptozotocin-induced decrease in Bcl-2 expression and increases in Bax and cleaved PARP expression in diabetic rats. Dapagliflozin also reversed the increases in MDA and LDH and decreases in SOD and GSH in diabetic rats. The fructose-streptozotocin-induced increase in p62 expression and decreases in LC3 and Beclin 1 expression were reversed by dapagliflozin. It upregulated miR-30e-5p expression and downregulated phosphorylated AKT and mTOR expression in diabetic rats. MicroRNA-30e-5p targeted AKT and inhibition of miR-30e-5p attenuated the dapagliflozin-induced decrease in p-AKT and p-mTOR expression in diabetic rats.
Conclusion: In fructose-streptozotocin-induced diabetic rats, dapagliflozin ameliorates kidney injury, suppresses cell apoptosis and oxidative stress, and promotes cell autophagy through upregulation of miR-30e-5p and inactivation of the AKT/mTOR pathway. Therefore, dapagliflozin is a potent therapeutic agent for the management of diabetic neuropathy.

Keywords: Dapagliflozin, Apoptosis, Oxidative stress, Autophagy, Diabetic nephropathy, Fructose-streptozotocin

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates